

CIA Gas Detection: VDR2

1.4

Team 506

Team Introduction

Shawn Butler Manufacturing Engineer Ben Labiner Mechatronics Engineer Alex McIvor Test Engineer Jane NordhagenMichaela PorcelliResearchDesignEngineerEngineer

Sponsor and Advisor

Engineering Mentor Franklin Roberts *Central Intelligence Agency (CIA)*

Academic Advisor Shayne McConomy, Ph.D. Senior Design Professor

Objective

The objective of this project is to design a wearable gas sensor tailored for CIA search and rescue operations to improve user experience from existing sensors.

Project Background

When buildings collapse, flammable or toxic gasses enter the air, making it dangerous for search and rescue responders to assist trapped survivors

Current gas detectors are hand-held and bulky, making them difficult to monitor and control when wearing response gear

A wearable gas detection and alert system would make it easier for first responders to focus on their job without needing to regularly check is the air surrounding them is potentially harmful

Assumptions

Product will be used in building collapse scenario	Only known gasses will be detected	There is no expectation of concealment

FAMU-FSU College of Engincering

Michaela Porcelli

Markets

Primary Markets

Secondary Markets

AGNETIC FIELD LABORATORY

Functions Hierarchy Chart

Customer Needs

P Device should be lightweight and not interfere with user mobility

Primary purpose of device is to alert user

Device should run for 18 hours continuously

Provide a should withstand fall of 15ft

Device should function from 20-100F

Concept Generation

*Final concept will be integrated to Team 505

Medium Fidelity Concepts

High Fidelity Concepts

Waist strap/ belt mounted computer, battery, and sensors Modular box for computer and battery with variable sensor configurations Analog (chemical based) arm strap

High Fidelity Concepts

Battery in a Waist Pack

- All components will be mounted on a waist strap to centralize weight and ease of access
- Components can be added to belts already worn by first responders

High Fidelity Concepts

Modular Computation Box

- Computer and battery will be stored in an isolated box and sensors will have variable mounting locations
- Computer box can be moved and mounted to user preference

High Fidelity Concepts

Arm Mounted Analog Sensor

- A reservoir with chemicals that (non-combustively) react with desired gasses will be released onto arm test strips
- Concept will not rely on digital sensors to detect gasses

Concept Selection Tools

Analytical Hierarchy Process

Binary Pairwise Comparison

House Of Quality (HoQ)

Engineering Characteristics

Pugh Chart First Iteration

FAMU-FSU College of Engineering

Benjamin Labiner

Pugh Chart Second Iteration

Benjamin Labiner

Analytical Hierarchy Process

Next Steps For Prototype

Design housing for battery and computer

Final Selection

Modular Sensing Box

- Variability in mounting location and greater customizability in user experience
- Can be used with a wide range of potential wearable displays
- Sensors can be moved to appropriate elevations depending on situation
- Surrounding box can be used to spread heat as well as increase durability

Next Steps For Prototype

Develop code structure for how data will be collected and analyzed

Next Steps For Prototype

Work with Team 505 to integrate sensors with wearable component

Questions?

